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What is making the diffuse gamma-ray background?
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Expected contribution of source populations to the IGRB

Sum is ~ 60-100% of IGRB intensity (energy-dependent)
Fermi-LAT Collaboration (preliminary)

Main)(and)guaranteed))contributions)to)the)Fermi)EGB)

Contribution)from)FSRQs)+)BL)Lac)+)Radio)galaxies)+)star&forming)galaxies:)
)~might)account)for)the)totality)of)the)measured)EGB)at)high)energies.)
)~not)enough)to)account)for)the)EGB)at)low)energies)!)What$makes$the$rest?$

[Courtesy)of)M.)Ajello])
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Detecting unresolved sources with anisotropies

• diffuse emission that originates from one or more unresolved source 
populations will contain fluctuations on small angular scales due to 
variations in the number density of sources in different sky directions

• the amplitude and energy dependence of the anisotropy can reveal the 
presence of multiple source populations and constrain their properties
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Anisotropy is another IGRB observable!
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The angular power spectrum

• intensity angular power spectrum: 

• indicates dimensionful amplitude of anisotropy

• fluctuation angular power spectrum: 

• dimensionless, independent of intensity normalization

• amplitude for a single source class is the same in all energy bins 
(if all members have same energy spectrum)
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predicted fluctuation angular 
power                [sr] at l = 100 
for a single source class (LARGE 
UNCERTAINTIES):

• blazars: ~ 2e-4

• starforming galaxies: ~ 2e-7

• dark matter: ~ 1e-6 to ~ 1e-4

• MSPs: ~ 0.03

C`/hIi2
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Ando, Komatsu, Narumoto & Totani 2007

Angular power spectra of unresolved gamma-ray sources

EGRET, which is expected to be achieved after two years
of all-sky survey observations of sources with a spectral
index of 2 [56]. Our predictions for Cl from GLAST data
are shown in Fig. 4. As GLAST can detect and remove
more fainter objects than EGRET, the Poisson term is
greatly reduced while the correlation part is almost un-
changed. If the blazar bias is larger than 1, the correlation
part would dominate the angular power spectrum at low l’s,
which would allow us to measure the average bias of
unresolved blazars.

We also show the correlation part of the angular power
spectrum using a bias model which was inferred from the
optical quasar observations [51,52]:

 bQ!z" # 0:53$ 0:289!1$ z"2: (21)

If the unification picture of the AGNs is correct, then it may
be natural to set bB # bQ!z". The results from this calcu-
lation are shown as the dot-dashed curves in Figs. 3 and 4.
We find that these results are quite similar to the case of
bB # 1. This is because at low redshift, z & 0:5, the quasar
bias is close to 1, and the main contribution to the CGB
from blazars comes also from relatively low-redshift range.
Once again, we note that the quasar bias [Eq. (21)] is
significantly different from the bias inferred from the
x-ray AGN observation, which indicated stronger cluster-
ing [53–55]. Therefore, one should keep in mind that a
wide range of the blazar bias, possibly up to %5, is still
allowed. Hereafter, we adopt bB # 1 as our canonical
model, and we note that CC

l simply scales as b2B.

V. DISTINGUISHING DARK MATTER
ANNIHILATION AND BLAZARS

The main goal in this paper is to study how to distinguish
CGB anisotropies from dark matter annihilation and from
blazars. The current uncertainty in the blazar bias would be
the source of systematic errors, but this can be reduced
significantly by several approaches, such as the upgraded
and converged bias estimations of AGNs from the other
wavebands, direct measurement of the blazar bias from the
detected point sources by GLAST [46], and the CGB
anisotropy at different energies where the contribution
from dark matter annihilation is likely to be small.

A. Formulation for the two-component case

The total CGB intensity is the sum of dark matter
annihilation and blazars:

 ICGB!E; n̂" # IB!E; n̂" $ ID!E; n̂"; (22)

 hICGB!E"i # hIB!E"i$ hID!E"i; (23)

where the subscripts B and D denote blazar and dark matter
components, respectively. The expansion coefficients of
the spherical harmonics are given by

 aCGBlm #
Z

d!n̂
ICGB!E; n̂" & hICGB!E"i

hICGB!E"i
Y'
lm!n̂"

#
Z

d!n̂
!IB!E; n̂" $ !ID!E; n̂"

hICGB!E"i
Y'
lm!n̂"

( fBaBlm $ fDaDlm; (24)

where !IB;D ( IB;D & hIB;Di, fB;D ( hIB;Di=hICGBi. These
fB and fD are the fraction of contribution from the blazars
and dark matter annihilation to the total CGB flux, and we
have the relation fB $ fD # 1. Therefore, aB;Dlm is defined
as the coefficient of the spherical harmonic expansion if
each component is the only constituent of the CGB flux,
the same definition as in the previous sections or of AK06
[41]. The total angular power spectrum CCGB

l # hjaCGBlm j2i
is, therefore, written as

 CCGB
l # f2BCl;B $ f2DCl;D $ 2fBfDCl;BD; (25)

where Cl;B and Cl;D are the angular power spectrum of the
CGB from blazars (Sec. IV) and dark matter annihilation
(Sec. III and AK06 [41]), respectively, and Cl;BD (
haBlmaD'

lm i is a cross correlation term. This cross correlation
term is derived in Appendix B, and is again divided into 1-
halo and 2-halo terms, i.e.,

 Cl;BD # C1h
l;BD $ C2h

l;BD; (26)

where each term is given by

 

FIG. 4 (color online). The same as Fig. 3 but for the CGB
anisotropy expected from GLAST data.

DARK MATTER ANNIHILATION OR UNRESOLVED . . . PHYSICAL REVIEW D 75, 063519 (2007)

063519-7

Predicted angular power spectrum 
of unresolved blazars

• the angular power spectrum of 
many gamma-ray source classes 
(except dark matter) is 
dominated by the Poisson (shot 
noise) component for multipoles 
greater than ~ 10

• Poisson angular power arises 
from unclustered point sources 
and takes the same value at all 
multipoles
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Fermi LAT anisotropy measurement

• identifying the signal at 155 ≤ l ≤ 504 
as Poisson angular power CP, best-fit 
value of CP is determined

• significant (>3σ) detection of angular 
power up to 10 GeV, lower 
significance power measured at 10-50 
GeV
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Energy dependence of anisotropy
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• consistent with no energy dependence, but mild or localized energy dependence 
not excluded

• consistent with all anisotropy contributed by one or more source classes 
contributing same fractional intensity at all energies considered

Fluctuation anisotropy energy spectrum

Ackermann et al. [Fermi LAT Collaboration], 
PRD 85, 083007 (2012)
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Decomposing diffuse emission with anisotropy
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assumptions:

• two-component scenario

• uncorrelated components

• each component defined by a 
single energy spectrum

• one component dominates the 
intensity at some energy 

2

model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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under these assumptions, 

features observed in the anisotropy energy spectrum can 
be used to extract each component’s intensity spectrum 

without a priori assumptions about the shape of the intensity 
spectra or anisotropy properties!

observables

model parameters
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The magic of algebra!
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niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108
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per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2




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I2 = Itot


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Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2
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

(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157

+

→

2

are guaranteed to contribute significantly to the IGRB at
some energy. Reference [22] showed that by combining
the spectral and anisotropy properties of the IGRB, it is
possible to identify the presence of a second, even sub-
dominant, component, such as a signal from dark mat-
ter annihilation or decay, over a dominant, astrophysi-
cal contribution. We extend this approach by developing
techniques that allow the intensity spectra of the individ-
ual components to be reconstructed without requiring a
model or prediction for any of the contributions.

For di↵use backgrounds composed of emission from un-
correlated source populations, we show that under cer-
tain conditions, if the intensity energy spectrum (di↵er-
ential photon intensity as a function of energy) and the
anisotropy energy spectrum (angular power at a fixed
multipole as a function of energy) of the di↵use back-
ground are both measured with su�cient accuracy, the
shape of the intensity energy spectrum of each compo-
nent can be recovered; in some cases the absolute nor-
malizations of the intensity spectra are also recoverable.
Similarly, in some cases the amplitude of the angular
power spectra of the individual components can also be
determined. We discuss the conditions under which such
decompositions are feasible, and demonstrate these novel
techniques on plausible scenarios for the IGRB composi-
tion. Although our examples are restricted to the IGRB,
the methods presented here can be applied to any di↵use
background at any wavelength.

In §II we introduce the formalism common to all of
the decomposition techniques. In §III we define IGRB
component models and simulated observations used for
the example scenarios. The details of each decomposition
technique are described in §IV; example scenarios illus-
trating a subset of the techniques are also presented. We
extend our approach to selected three-component scenar-
ios in §V. We discuss the potential of these techniques
for understanding gamma-ray source populations in §VI.

II. TWO-COMPONENT DECOMPOSITION:
METHODS

The two properties of di↵use emission we will use are
the di↵erential intensity energy spectrum I(E) (photons
per area per time per solid angle per energy) and the
angular power spectrum C` of a sky map of the inten-
sity. The angular power spectrum is defined as C` =
h|a`m|

2

i, where a`m are the coe�cients of the expansion
of the intensity map in the basis of spherical harmonics.
We also define the fluctuation angular power spectrum
Ĉ` ⌘ C`/I

2, where I is the mean intensity of the emis-
sion with intensity angular power spectrum C`. Because
Ĉ` describes fluctuations in units of the mean, the fluc-
tuation angular power at a fixed ` is energy-independent
for a signal arising from a single population of sources
with identical observer-frame intensity spectra. In the
following we assume that each distinct component of the
di↵use emission meets this criterion.

Variation between the source spectra of individual
members of a population can result in fluctuation an-
gular power which is energy dependent because the rel-
ative contributions of spectrally di↵erent sources within
a population change with energy (e.g., harder sources
contribute relatively more flux at high energies than at
low energies). In addition, for cosmological source popu-
lations, energy-dependent fluctuation angular power can
also arise due to redshifting of sharp features in the source
spectra, such as line emission or abrupt cut-o↵s (see,
e.g., [23, 24]).
In practice, if a component of the emission arises from

a population of sources, we assume that the requirement
that the single-population Ĉ` is energy-independent is
satisfied if the variation in the intensity spectra of in-
dividual members of the population is su�ciently small
that the deviation of the fluctuation angular power from
an energy-independent quantity is at a level smaller than
the uncertainty on the anisotropy measured by a specific
observation. We comment on the validity of this assump-
tion in the context of the IGRB in §III.
Our approach exploits the energy independence of the

single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ`. If we consider a sce-
nario in which the di↵use emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I

1

(E) and I

2

(E) and angular power spec-
tra C`,1 and C`,2, then the total intensity is simply the
sum of the two components,

I

tot

(E) = I

1

(E) + I

2

(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C`,tot(E) = C`,1(E) + C`,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ`,tot(E) =

✓
I

1

(E)

I

tot

(E)

◆
2

Ĉ`,1 +

✓
I

2

(E)

I

tot

(E)

◆
2

Ĉ`,2 . (3)

This is the fluctuation anisotropy energy spectrum for
the case we consider. In the following we will always
use the term “anisotropy energy spectrum” to refer to
the fluctuation angular power of the total emission as a
function of energy.
With su�cient photon statistics, I

tot

and Ĉ`,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ`,1 and Ĉ`,2 from the data, we
can solve Eqs. (1) and (3) for I

1

and I

2

:

I

1

= I

tot

0

@
Ĉ`,2 ±

q
Ĉ`,1Ĉ`,tot + Ĉ`,2Ĉ`,tot � Ĉ`,1Ĉ`,2

Ĉ`,1 + Ĉ`,2

1

A

(4)

I

2

= I

tot

0

@
Ĉ`,1 ⌥

q
Ĉ`,1Ĉ`,tot + Ĉ`,2Ĉ`,tot � Ĉ`,1Ĉ`,2

Ĉ`,1 + Ĉ`,2

1

A

(5)
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Hensley, Pavlidou & JSG (in prep)

Example observed intensity spectrum and 
anisotropy energy spectrum

red = published LAT measurements
black = example scenario for 10 yrs LAT observations

PRELIMINARY

• infer that one component 
dominates the intensity at the 
plateau

• at higher energies, the anisotropy 
falls, indicating that a more 
isotropic source is making an 
increasing fractional contribution

6

spectra can be derived exactly, without making any as-
sumptions about the relative contributions of the source
classes to either the total intensity or anisotropy that
cannot be inferred directly from the observed spectra.

As an example scenario, shown in Fig. 1, we choose
m

DM

= 300 GeV, h�vi = 20h�vi
0

, and annihilation into
⌧

+

⌧

� for the dark matter intensity spectrum, and adopt
a broken power law for the remaining intensity spectrum.
The anisotropies were taken to be Ĉ` = 1.2⇥10�4 sr, and
Ĉ` = 5⇥10�3 sr for the broken power law and dark mat-
ter signals, respectively. Because the anisotropy energy
spectrum is still rising between the last two data points,
the estimate for the Ĉ` of the dark matter component
will be biased low, thus slightly biasing the decomposed
spectra away from the true value.

B. Low-Anisotropy Plateau

We now consider a scenario in which a low-anisotropy
plateau is measured in the anisotropy energy spectrum
at low or high energies, and the anisotropy rises from the
plateau at low energies or falls to the plateau at high
energies. This corresponds to a case where the compo-
nent subdominant in intensity at the plateau has a much
higher anisotropy,

Ĉ`,1 ⌧ Ĉ`,2 = ⇤Ĉ`,1 (7)

with ⇤ � 1.
In this case, Eq. (3) can be written as

Ĉ`,tot =

✓
1�

I

2

I

tot

◆
2

Ĉ`,1 +

✓
I

2

I

tot

◆
2

⇤Ĉ`,1 (8)

or

Ĉ`,tot

Ĉ`,1

= 1� 2
I

2

I

tot

+ (1 + ⇤)

✓
I

2

I

tot

◆
2

. (9)

Now we define x(E) = I

2

/I

tot

and !(E) = Ĉ`,tot/Ĉ`,1�1,
which can be determined by observations at each energy.
Then we have

(1 + ⇤)x2

� 2x� ! = 0 (10)

with solution

x =
1±

p
1 + (1 + ⇤)!

1 + ⇤
. (11)

Since ⇤ � 1, as long as ! > 1 we can approximate this
by

x ⇡

1±
p

(1 + ⇤)!

1 + ⇤
⇡

p

!

p

1 + ⇤
. (12)

where we have selected the + solution since x is a non-
negative quantity. Since ! is an observable, it is always
possible to determine whether the ! > 1 condition holds.

The shape of the subdominant spectrum can thus be de-
rived up to a multiplicative constant.
As an example scenario, shown in Fig. 2, we choose a

dark matter particle with m

DM

= 1000 GeV that annihi-
lates to bb̄ with h�vi = 33h�vi

0

and a broken power law
component to the intensity spectrum. We set the fluctu-
ation angular power to Ĉ` = 1 ⇥ 10�4 sr for the broken
power law component, and Ĉ` = 2.5 ⇥ 10�3 sr for dark
matter.

C. High-Anisotropy Plateau

If a high-anisotropy plateau is measured in the
anisotropy energy spectrum at low or high energies, and
the anisotropy falls from the plateau at low energies
or rises to the plateau at high energies, then a less
anisotropic source must be making an increasing con-
tribution to the background at energies far from the
plateau. We now consider this scenario, corresponding
to the case that one component is everywhere dominant
in the intensity,

I

1

> I

2

(13)

and also more anisotropic

Ĉ`,1 � Ĉ`,2. (14)

In this case, Eq. 3 can be approximated by

Ĉ`,tot ⇡

✓
I

1

I

tot

◆
2

Ĉ`,1. (15)

Immediately then we have

I

1

⇡ I

tot

s
Ĉ`,tot

Ĉ`,1

(16)

and

I

2

⇡ I

tot

 
1�

s
Ĉ`,tot

Ĉ`,1

!
. (17)

The assumption that the higher anisotropy source is
dominant must be satisfied at the energies where the
high-anisotropy plateau is measured. Each subsequent
point moving away from the plateau in energy will yield
a value for the fractional contribution of the subdominant
source via the ratio of Eqns. 16 and 17. Therefore, the
appropriateness of the assumption that the anisotropic
source is dominant can always be verified. This decom-
position yields both the shape of the intensity spectra as
well as their normalizations.
As an example scenario, shown in Fig. 3, we choose a

dark matter particle with m

DM

= 200 GeV that anni-
hilates to ⌧

+

⌧

� with h�vi = 6.7h�vi
0

and a component
with a power law intensity spectrum. We set the fluctu-
ation angular power to Ĉ` = 1.2⇥ 10�4 sr for the power
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model or prediction for any of the contributions.80

For diffuse backgrounds composed of emission from un-81

correlated source populations, we show that under cer-82

tain conditions, if the intensity energy spectrum (differ-83

ential photon intensity as a function of energy) and the84

anisotropy energy spectrum (angular power at a fixed85

multipole as a function of energy) of the diffuse back-86

ground are both measured with sufficient accuracy, the87

shape of the intensity energy spectrum of each compo-88

nent can be recovered; in some cases the absolute nor-89

malizations of the intensity spectra are also recoverable.90

Similarly, in some cases the amplitude of the angular91

power spectra of the individual components can also be92

determined. We discuss the conditions under which such93

decompositions are feasible, and demonstrate these novel94

techniques on plausible scenarios for the IGRB composi-95

tion. Although our examples are restricted to the IGRB,96

the methods presented here can be applied to any diffuse97

background at any wavelength.98

In §II we introduce the formalism common to all of99

the decomposition techniques. In §III we define IGRB100

component models and simulated observations used for101

the example scenarios. The details of each decomposi-102

tion technique are described in §IV; example scenarios103

illustrating a subset of the techniques are also presented.104

We extend our approach to selected three-component sce-105

narios in §V. We discuss the potential of these tech-106

niques for understanding gamma-ray source populations107

and highlight multiwavelength applications in §VI.108

II. TWO-COMPONENT DECOMPOSITION:109

METHODS110

The two properties of diffuse emission we will use are111

the differential intensity energy spectrum I(E) (photons112

per area per time per solid angle per energy) and the113

angular power spectrum C! of a sky map of the inten-114

sity. The angular power spectrum is defined as C! =115

〈|a!m|2〉, where a!m are the coefficients of the expansion116

of the intensity map in the basis of spherical harmonics.117

We also define the fluctuation angular power spectrum118

Ĉ! ≡ C!/I2, where I is the mean intensity of the emis-119

sion with intensity angular power spectrum C!. Because120

Ĉ! describes fluctuations in units of the mean, the fluc-121

tuation angular power at a fixed ! is energy-independent122

for a signal arising from a single population of sources123

with identical observer-frame intensity spectra. In the124

following we assume that each distinct component of the125

diffuse emission meets this criterion.126

Variation between the source spectra of individual127

members of a population can result in fluctuation an-128

gular power which is energy dependent because the rel-129

ative contributions of spectrally different sources within130

a population change with energy (e.g., harder sources131

contribute relatively more flux at high energies than at132

low energies). In addition, for cosmological source popu-133

lations, energy-dependent fluctuation angular power can134

also arise due to redshifting of sharp features in the source135

spectra, such as line emission or abrupt cut-offs [see, e.g.,136

23, 24].137

In practice, if a component of the emission arises from138

a population of sources, we assume that the requirement139

that the single-population Ĉ! is energy-independent is140

satisfied if the variation in the intensity spectra of in-141

dividual members of the population is sufficiently small142

that the deviation of the fluctuation angular power from143

an energy-independent quantity is at a level smaller than144

the uncertainty on the anisotropy measured by a specific145

observation. We comment on the validity of this assump-146

tion in the context of the IGRB in §III.147

Our approach exploits the energy independence of the
single-component fluctuation angular power, and so it is
convenient for us to work with Ĉ!. If we consider a sce-
nario in which the diffuse emission is composed of emis-
sion from two spatially uncorrelated components with in-
tensity spectra I1(E) and I2(E) and angular power spec-
tra C!,1 and C!,2, then the total intensity is simply the
sum of the two components,

Itot(E) = I1(E) + I2(E) . (1)

The angular power spectrum of the total signal for un-
correlated components is the sum of the angular power
spectra of the components,

C!,tot(E) = C!,1(E) + C!,2(E). (2)

Rewritten in terms of the fluctuation angular power,

Ĉ!,tot(E) =

(

I1(E)

Itot(E)

)2

Ĉ!,1 +

(

I2(E)

Itot(E)

)2

Ĉ!,2 . (3)

This is the fluctuation anisotropy energy spectrum for148

the case we consider. In the following we will always149

use the term “anisotropy energy spectrum” to refer to150

the fluctuation angular power of the total emission as a151

function of energy.152

With sufficient photon statistics, Itot and Ĉ!,tot can be
determined at each energy from observations. If there is
a way to also determine Ĉ!,1 and Ĉ!,2 from the data, we
can solve Eqs. (1) and (3) for I1 and I2:

I1 = Itot





Ĉ!,2 ±
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(4)

I2 = Itot





Ĉ!,1 ∓
√

Ĉ!,1Ĉ!,tot + Ĉ!,2Ĉ!,tot − Ĉ!,1Ĉ!,2

Ĉ!,1 + Ĉ!,2





(5)
If there is an energy ∼ E0 around which only one com-153

ponent is expected to contribute to the total intensity154

(i.e., an energy range around E0 where I2(E0)/Itot(E0) ≈155

0), the anisotropy energy spectrum will be flat over this156

energy range. Then from Eq. (3) we immediately obtain157
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spectra can be derived exactly, without making any as-
sumptions about the relative contributions of the source
classes to either the total intensity or anisotropy that
cannot be inferred directly from the observed spectra.

As an example scenario, shown in Fig. 1, we choose
m

DM

= 300 GeV, h�vi = 20h�vi
0

, and annihilation into
⌧

+

⌧

� for the dark matter intensity spectrum, and adopt
a broken power law for the remaining intensity spectrum.
The anisotropies were taken to be Ĉ` = 1.2⇥10�4 sr, and
Ĉ` = 5⇥10�3 sr for the broken power law and dark mat-
ter signals, respectively. Because the anisotropy energy
spectrum is still rising between the last two data points,
the estimate for the Ĉ` of the dark matter component
will be biased low, thus slightly biasing the decomposed
spectra away from the true value.

B. Low-Anisotropy Plateau

We now consider a scenario in which a low-anisotropy
plateau is measured in the anisotropy energy spectrum
at low or high energies, and the anisotropy rises from the
plateau at low energies or falls to the plateau at high
energies. This corresponds to a case where the compo-
nent subdominant in intensity at the plateau has a much
higher anisotropy,

Ĉ`,1 ⌧ Ĉ`,2 = ⇤Ĉ`,1 (7)

with ⇤ � 1.
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where we have selected the + solution since x is a non-
negative quantity. Since ! is an observable, it is always
possible to determine whether the ! > 1 condition holds.

The shape of the subdominant spectrum can thus be de-
rived up to a multiplicative constant.
As an example scenario, shown in Fig. 2, we choose a

dark matter particle with m

DM

= 1000 GeV that annihi-
lates to bb̄ with h�vi = 33h�vi

0

and a broken power law
component to the intensity spectrum. We set the fluctu-
ation angular power to Ĉ` = 1 ⇥ 10�4 sr for the broken
power law component, and Ĉ` = 2.5 ⇥ 10�3 sr for dark
matter.

C. High-Anisotropy Plateau

If a high-anisotropy plateau is measured in the
anisotropy energy spectrum at low or high energies, and
the anisotropy falls from the plateau at low energies
or rises to the plateau at high energies, then a less
anisotropic source must be making an increasing con-
tribution to the background at energies far from the
plateau. We now consider this scenario, corresponding
to the case that one component is everywhere dominant
in the intensity,
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Ĉ`,1 � Ĉ`,2. (14)

In this case, Eq. 3 can be approximated by
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The assumption that the higher anisotropy source is
dominant must be satisfied at the energies where the
high-anisotropy plateau is measured. Each subsequent
point moving away from the plateau in energy will yield
a value for the fractional contribution of the subdominant
source via the ratio of Eqns. 16 and 17. Therefore, the
appropriateness of the assumption that the anisotropic
source is dominant can always be verified. This decom-
position yields both the shape of the intensity spectra as
well as their normalizations.
As an example scenario, shown in Fig. 3, we choose a

dark matter particle with m

DM

= 200 GeV that anni-
hilates to ⌧

+

⌧

� with h�vi = 6.7h�vi
0

and a component
with a power law intensity spectrum. We set the fluctu-
ation angular power to Ĉ` = 1.2⇥ 10�4 sr for the power
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Ĉ`,tot ⇡

✓
I

1

I

tot

◆
2
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a value for the fractional contribution of the subdominant
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Example IGRB decomposition
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Decomposed energy spectra

red = published LAT measurements
black = example scenario for 10 yrs LAT observations

PRELIMINARY PRELIMINARY

Hensley, Pavlidou & JSG (in prep)

Example observed intensity spectrum and 
anisotropy energy spectrum
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Separating signals with 
energy-dependent anisotropy
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TABLE I: Summary of two-component decomposition techniques.

Method Observational Signature Inferred Properties of
Components

Intensity
Normalization
Recovered?

Fluctuation
Angular Power
Recovered?

Double plateau Plateaus at both high and
low energies observed in
anisotropy energy spectrum

One source dominant in
anisotropy at low energies,
other source dominant at
high energies

Yes Yes

Low-Anisotropy
Plateau

Anisotropy energy spectrum
rises from (falls to) a low-
anisotropy plateau at low
(high) energy

Source that is subdominant
in intensity is much more
anisotropic than the domi-
nant source

No No

High-Anisotropy
Plateau

Anisotropy energy spectrum
falls from (rises to) a high-
anisotropy plateau at low
(high) energy

Source that is subdominant
in intensity is much less
anisotropic than the domi-
nant source

Yes No

Known
Zero-Anisotropy
Component

None; requires a priori
knowledge that one of the
two components is isotropic

One source is completely
isotropic

No No

Minimum Minimum observed in the
anisotropy energy spectrum

Both source components
have comparable intensity
and anisotropy such that
Eq. 20 is satisfied at some
energy

Yes Yes

Multiple-!
Measurements

Two distinct anisotropy en-
ergy spectra can be obtained
at two different !

Ĉ! is a function of ! for at
least one source such that
two distinct anisotropy en-
ergy spectra can be obtained
at different !

Yes Yes

Ĉ!,1 = Ĉtot
! (E0) from the anisotropy of this baseline. A158

similar flat baseline could result if two source classes have159

the same spectral shape over an energy range, but such a160

scenario is unlikely for the source classes considered here.161

In each of the following cases, we will assume either that162

we can obtain the Ĉ! of one of the two source classes163

in this way, or that one source class is known to have164

Ĉ! ! 0.165

We discuss six distinct two-component decomposition166

techniques below. Some of them allow us to extract the167

component intensity spectra, while others only allow us168

to derive the shapes of the two intensity spectra up to169

unknown normalization constants. Some of the tech-170

niques also yield measurements of the fluctuation angu-171

lar power spectra of each component source population.172

Table I gives a summary of these techniques and their173

applicability conditions. We emphasize that in all cases174

we make the following three assumptions: (1) the diffuse175

background is composed of emission from uncorrelated176

source classes, (2) the fluctuation angular power of each177

individual component is independent of energy, and (3)178

the fluctuation angular power of one component can be179

directly measured from the data at some energy or is180

known to be negligibly small.181

III. PARAMETERS OF EXAMPLE SCENARIOS182

A. IGRB Component Models183

To illustrate the decomposition techniques, we apply184

them to example scenarios that could be measured by the185

Fermi-LAT within 5–10 years of observation time. Our186

example IGRBs are composed of an extragalactic blazar187

component, which is assumed to be dominant in intensity188

at low energies (less than a few GeV), and either a Galac-189

tic dark matter annihilation component with one of two190

benchmark spectra (annihilation to a τ+τ− or bb̄ final191

state), or a known zero-anisotropy component which is192

assumed to have a power-law intensity energy spectrum.193

Our example scenarios are consistent with current ob-194

servations of the measured IGRB intensity energy spec-195

trum [20] and the measurement of the IGRB anisotropy196

energy spectrum [21]. Although we do not consider them197

in our example scenarios, other known gamma-ray source198

populations which may contribute significantly to the in-199

tensity and/or anisotropy of the IGRB at some energies200

include star-forming galaxies [9, 25] VASO add more201

recent ones here?, gamma-ray loud radio galaxies [26]202
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Summary
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• combining spectral and spatial features in diffuse emission can 
improve sensitivity to subdominant signals

• combining the intensity energy spectrum and the anisotropy energy 
spectrum of diffuse emission can enable individual component 
spectra to be decomposed without a priori assumptions about the 
component spectral shapes or their anisotropy

• model-independent collective spectra of source populations can 
reveal important information about the properties of the source 
class

• a model-independent measurement of the dark matter annihilation 
or decay spectrum can yield information about the dark matter 
mass, dominant annihilation or decay modes, and annihilation or 
decay rate
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Additional slides
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• the angular power spectrum of dark matter annihilation and decay falls off faster than Poisson at 
multipoles above ~ 100

• current measurement uncertainties are too large to identify a dark matter component via scale 
dependence; may be possible with future measurements
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Angular power spectra of dark matter signals
14 Fornasa et al.
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Figure 7. Upper panels: Fluctuation APS of the template gamma-ray maps at an observed energy of 4 GeV for annihilating DM (left) and decaying DM
(right). The particle physics parameters (including Mmin) as well as the color coding are the same as those in Figs. 5 and 6. Solid (dashed) lines indicate
the extragalactic (galactic) emission. Bottom panels: The same as the upper panels but for the intensity APS (see Eq. 13). The upper panels give a measure
of the relative anisotropies of the different components, whereas the bottom panels are an absolute measurement of the anisotropies and clearly show which
components dominate the APS. The grey dashed line (with arbitrary normalization) indicates a Poissonian APS independent on multipole.

resolved structures generate anisotropies that only contribute to a
small fraction of the total emission (the fi factor in Eq. 14).

In the lower panels of Fig. 7 we show the intensity APS, which
allow us to estimate the absolute contribution of the different com-
ponents. Large values of the intensity APS can be obtained from a
particularly anisotropic component or from a very bright one. The
angular dependence for all components is the same as in the fluctu-
ation APS, but now, due to a very small average intensity, the EG-
MSII component has the lowest intensity APS (black solid line),
followed by the solid green line, corresponding to the sum of the
EG-MSII and EG-UNRESMain components (even if the fluctua-
tion APS is larger for the former than for the latter). Once the full

extragalactic emission is considered (solid red and blue lines), the
intensity APS is between a factor of 100 and 5× 104 larger than the
intensity APS of EG-MSII, depending on the subhalo boost used.
Notice that the solid yellow and purple lines (that only include re-
solved (sub)halos and the subhalo boost to the resolved main halos)
have essentially the same intensity APS as the solid red and blue
lines, which implies that the total intensity APS of the DM annihi-
lation signal is dominated by the extragalactic unresolved subhalos
of the massive main halos.

In the case of DM decay (right panels), we can see that the
fluctuation APS of the EG-MSII component (solid black line) has
the same shape as the solid green line (which adds the contribution

c© 0000 RAS, MNRAS 000, 000–000

Predicted angular power spectrum 
of DM annihilation

Predicted angular power spectrum 
of DM decay

Fornasa, Zavala, Sanchez-Conde et al. 2012
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Energy-dependent anisotropy
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